Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) At equilibrium, _____.
 - A) the rates of the forward and reverse reactions are equal
 - B) the rate constants of the forward and reverse reactions are equal
 - C) all chemical reactions have ceased
 - D) the value of the equilibrium constant is 1
 - E) the limiting reagent has been consumed
- 2) Which one of the following will change the value of an equilibrium constant?
 - A) adding other substances that do not react with any of the species involved in the equilibrium
 - B) varying the initial concentrations of reactants
 - C) changing temperature
 - D) varying the initial concentrations of products
 - E) changing the volume of the reaction vessel
- 3) The value of K_{eq} for the following reaction is 0.25:

 $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$

The value of K_{eq} at the same temperature for the reaction below is _____.

$$2SO_2(g) + 2NO_2(g) \rightleftharpoons 2SO_3(g) + 2NO(g)$$

A) 0.062 B) 16 C) 0.25 D) 0.50 E) 0.12

4) The value of K_{eq} for the equilibrium

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

is 794 at 25°C. At this temperature, what is the value of Keq for the equilibrium below?

HI (g)
$$\rightleftharpoons 1/2$$
 H₂ (g) + 1/2 I₂ (g)
A) 0.035 B) 0.0013 C) 28 D) 397 E) 1588

5) The K_{eq} for the equilibrium below is 7.52×10^{-2} at 480° C.

$$2Cl_2(g) + 2H2O(g) \implies 4HCl(g) + O_2(g)$$

What is the value of $K_{\mbox{eq}}$ at this temperature for the following reaction?

Cl₂ (g) + H₂O (g)
$$\rightleftharpoons$$
 2HCl (g) + $\frac{1}{2}$ O₂ (g)
A) 0.150 B) 0.274 C) 0.0376 D) 5.66 × 10⁻³ E) 0.0752

6) At 1000 K, the equilibrium constant for the reaction

$$2NO(g) + Br_2(g) \implies 2NOBr(g)$$

is $K_p = 0.013$. Calculate K_p for the reverse reaction,

2NOBr (g)
$$\rightleftharpoons$$
 2NO (g) + Br₂ (g).
A) 0.99 B) 1.1 C) 0.013 D) 1.6 × 10⁻⁴ E) 77

7) The expression for K_{eq} for the reaction below is _____.

$$4$$
CuO (s) + CH₄ (g) \rightleftharpoons CO₂ (g) + 4Cu (s) + 2H₂O (g)

A)
$$\frac{P_{CO_2} P_{H_2O}^2}{P_{CH_4}}$$

B)
$$\frac{P_{CH_4}}{P_{H_2O}^2 P_{CO_2}}$$

C)
$$\frac{[Cu] P_{CO_2} P_{H_2O}^2}{[CuO]^4 P_{CH_4}}$$

D)
$$\frac{P_{CH_4}}{P_{CO_2} P_{H_2}^2}$$

E)
$$\frac{P_{CO_2} P_{H_2O}^2}{P_{CuO}}$$

8) Acetic acid is a weak acid that dissociates into the acetate ion and a proton in aqueous solution:

$$HC_{2}H_{3}O_{2}(aq) \rightleftharpoons C_{2}H_{3}O_{2}G(aq) + H^{+}(aq)$$

At equilibrium at 25°C a 0.100 M solution of acetic acid has the following concentrations: [HC2H3O2] = 0.0990 M, [C2H3O2G] = 1.33×10^{-3} M, and [H+] = 1.33×10^{-3} M. The equilibrium constant, K_{eq}, for the ionization of acetic acid at 25°C is _____.

A)
$$5.71 \times 10^4$$
 B) 1.79×10^{-5} C) 1.75×10^{-7} D) 5.71×10^6 E) 0.100

9) At 200°C, the equilibrium constant for the reaction below is 2.40×10^3 .

 $2NO(g) \Longrightarrow N_2(g) + O_2(g)$

A closed vessel is charged with 36.1 atm of NO. At equilibrium, the partial pressure of O₂ is ______ atm. A) 35.7 B) 18.1 C) 1.50×10^{-2} D) 6.00 E) 294

10) How is the reaction quotient used to determine whether a system is at equilibrium?

A) The reaction is at equilibrium when $Q < K_{eq}$.

B) The reaction is at equilibrium when $Q > K_{eq}$.

C) At equilibrium, the reaction quotient is undefined.

D) The reaction quotient must be satisfied for equilibrium to be achieved.

E) The reaction is at equilibrium when $Q = K_{eq}$.

11) In the coal-gasification process, carbon monoxide is converted to carbon dioxide via the following reaction:

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

In an experiment, 0.35 mol of CO and 0.40 mol of H₂O were placed in a 1.00–L reaction vessel. At equilibrium, there were 0.19 mol of CO remaining. K_{eq} at the temperature of the experiment is ______.

A) 0.75 B) 1.0 C) 5.47 D) 1.78	E) 0.56
--------------------------------	---------

12) Nitrosyl bromide decomposes according to the following equation.

 $2NOBr(g) \rightleftharpoons 2NO(g) + Br_2(g)$

A sample of NOBr (0.64 mol) was placed in a 1.00–L flask containing no NO or Br₂. At equilibrium the flask contained 0.46 mol of NOBr. How many moles of NO and Br₂, respectively, are in the flask at equilibrium?

A) 0.46, 0.23 B) 0.18, 0.090 C) 0.46, 0.46 D) 0.18, 0.360 E) 0).18, 0.18
--	------------

- 13) In which of the following reactions would increasing pressure at constant temperature <u>not</u> change the concentrations of reactants and products, based on Le Chatelier's principle?
 - A) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ B) $2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$ C) $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$ D) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ E) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$

14) Consider the following reaction at equilibrium:

 $2CO_2(g) \Longrightarrow 2CO(g) + O_2(g) \qquad \Delta H^\circ = -514 \text{ kJ}$

Le Chatelier's principle predicts that adding $O_2(g)$ to the reaction container will ______.

A) decrease the partial pressure of CO₂ (g) at equilibrium

B) decrease the value of the equilibrium constant

C) increase the partial pressure of CO_2 (g) at equilibrium

D) increase the value of the equilibrium constant

E) increase the partial pressure of CO (g) at equilibrium

15) Consider the following reaction at equilibrium:

 $2CO_2(g) \implies 2CO(g) + O_2(g) \qquad \Delta H^\circ = -514 \text{ kJ}$

Le Chatelier's principle predicts that an increase in temperature will ______.

A) increase the partial pressure of O₂ (g)

- B) decrease the value of the equilibrium constant
- C) increase the partial pressure of CO
- D) decrease the partial pressure of $CO_2(g)$
- E) increase the value of the equilibrium constant
- 16) Consider the following reaction at equilibrium.

 $2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g) \qquad \Delta H^\circ = -514 \text{ kJ}$

Le Chatelier's principle predicts that the equilibrium partial pressure of CO (g) can be maximized by carrying out the reaction _____.

- A) at high temperature and high pressure
- B) at high temperature and low pressure
- C) at low temperature and low pressure
- D) at low temperature and high pressure
- E) in the presence of solid carbon

17) The effect of a catalyst on an equilibrium is to _____

- A) increase the rate at which equilibrium is achieved without changing the composition of the equilibrium mixture
- B) increase the rate of the forward reaction only
- C) shift the equilibrium to the right
- D) increase the equilibrium constant so that products are favored
- E) slow the reverse reaction only

18) The following equilibrium is readily established:

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

At equilibrium at 373 K, a 1.00-L reaction vessel contains 0.0106 mol of SO_2Cl_2 and 0.0287 mol each of SO_2 and Cl_2 . What is K_{eq} for the reaction at 373 K?

A) 12.8 B) 2.72 C) 0.0781 D) 2.39 E) 0.418

19) Dinitrogentetraoxide partially decomposes according to the following equilibrium:

 $N_2O_4(g) \rightarrow 2NO_2(g)$

A 1.000–L flask is charged with 3.00×10^{-2} mol of N₂O₄. At equilibrium, 2.36×10^{-2} mol of N₂O₄ remains. K_{eq} for this reaction is ______.

A) 0.723 B) 1.92 × 10⁻⁴ C) 6.93 × 10⁻³

- D) 0.391
- E) 0.212

20) The K_{eq} for the reation below is 1.49×108 at 100° C:

$$CO(g) + Cl_2(g) \rightarrow COCl_2(g)$$

In an equilibrium mixture of the three gases, $P_{CO} = P_{Cl_2} = 8.60 \times 10^{-4}$ atm. The partial pressure of the product, phosgene (COCl₂), is ______ atm. A) 2.01×10^{14} B) 1.72×10^{11} C) 1.28×10^5 D) 4.96×10^{-15} E) 1.10×10^2

21) Phosphorous trichloride and phosphorous pentachloride equilibrate in the presence of molecular chlorine according to the reaction:

 $PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$

 $K_{eq} = 2.01$ at 500 K. A 1.000-L reaction vessel is charged with 0.990 mol of PCl₅ and allowed to equilibrate at this temperature. The equilibrium partial pressure of PCl₃ is _____ atm.

A) 0.702 B) 4.25 C) 4.50 D) 36.4 E) 0.496

22) Phosphorous trichloride and phosphorous pentachloride equilibrate in the presence of molecular chlorine according to the reaction:

 $PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$

 $K_{eq} = 2.01$ at 500 K. A 1.000-L reaction vessel is charged with 0.300 mol of PCl₅ and allowed to equilibrate at this temperature. The equilibrium partial pressure of PCl₅ is _____ atm.

A) 10.1 B) 0.386 C) 2.24 D) 2.48 E) 0.211

2004 Free Response - Form B

1. $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

For the reaction represented above, the value of the equilibrium constant, K_p is 3.1×10^{-4} at 700 K.

- a) Write the expression for the equilibrium constant, K_p, for the reaction.
- b) Assume that the initial partial pressures of the gases are as follows:

 $P(N_2) = 0.411$ atm, $P(H_2) = 0.903$ atm, and $P(NH_3) = 0.224$ atm.

- i) Calculate the value of the reaction quotient, Q, at these initial conditions.
- ii) Predict the direction in which the reaction will proceed at 700. K if the initial partial pressures are those given above. Justify your answer.
- c) Calculate the value of the equilibrium constant, K_c , given that the value of K_p for the reaction at 700. K is 3.1×10^{-4} .
- d) The value of K_p for the reaction represented below is 8.3×10^{-3} at 700. K.

 $NH_3(g) + H_2S(g) \rightleftharpoons NH_4HS(g)$

Calculate the value of K_p at 700. K for each of the reactions represented below.

i)
$$NH_4HS(g) \rightleftharpoons NH_3(g) + H_2S(g)$$

ii) $2 H_2S(g) + N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_4HS(g)$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) A ID: chem9b 15.1-1 2) C ID: chem9b 15.1-7 3) A ID: chem9b 15.1-12 4) A ID: chem9b 15.1-15 5) B ID: chem9b 15.1-18 6) E ID: chem9b 15.1-24 7) A ID: chem9b 15.1-27 8) B ID: chem9b 15.1-31 9) B ID: chem9b 15.1-35 10) E ID: chem9b 15.1-38 11) E ID: chem9b 15.1-39 12) B ID: chem9b 15.1-42 13) E ID: chem9b 15.1-47 14) C ID: chem9b 15.1–50 15) B ID: chem9b 15.1-51 16) C ID: chem9b 15.1-52 17) A ID: chem9b 15.1-54 18) D ID: chem9b 15.2-2 19) C ID: chem9b 15.2-3 20) E ID: chem9b 15.2-4 21) B ID: chem9b 15.2-8

Answer Key Testname: CH_13_PRAC_TEST_EQUILIBRIUM.TST

22) A ID: chem9b 15.2-9

(PAGE ONE) AP Chem Practice Test Ch. 13 - Equilibrium (3) The second equation is ZX the stoichiometry of the 1stone, so the equilibrium consant for the 2nd equation is the square of the first one. (4) The 2nd equation was arrived at by reversing the 1st, and then cutting it in half stoichiometrically, Thus the K for the second equation is $\sqrt{794} = 0.035$ 5 The 2nd equation is 1/2 of the first equation, so the 2nd equation's K = VIST equation's K leave put (6) $K_p \# 1 = 0.013$, so $K_p \# 2 = 0.013 = 77$ Spiles For that problem $\begin{cases} 8 \\ K = \frac{[H+][C_2H_3O_2^-]}{[H_2H_3O_2^-]} = \frac{[I,33 \times 10^{-3}][I,33 \times 10^{-3}]}{[0,0990]} \\ \hline \end{cases}$ = 1.79 × 10-5 $K = 2400 = \frac{x^2}{(36.1 - 2x)^2}$ (9) $2N0 = N_2 + 0_2$ 0 0 +X +X 36.1 $2400 = \left(\frac{x}{36 \cdot 1 - 2x}\right)^2$ -2X ×Χ 36.1-2X V2400 = 36.1-2x $49.0 = \frac{1}{36.1 - 2 \times 10^{-2}}$ S x=Poz= 17.9 (36.1-2×)(49.0) = × 1768.53 - 97,98×=× 1768.53 = 98,98 X -17.9 = x

PAGE TWO $M = \frac{N}{V} = \frac{35meP}{1L}$ $= (0_2 + H_z)$ $CO + H_2O$ =0.35MI,35M 0,40M +0.16 +0.16 0, 40mal = 0,40 M C -0.16 -0.16 0.16 0.16 E 0,19M 0,24 $K = \frac{6.16)^2}{(0,19)(0.24)} = 0.56$ 0.19 - 0.35 = -0.16 MZNOBr = ZNO + BIG 12 M= 0.64 mor = 0,64M 0 +0,18 I 0.64 0 +0-09 -0.18 +Note: NOBr: Brz = 2:1 mol 0.09 0.18 0,46

A[NOB] = 0.46-0.64= -0.18

(3) E, DN=0 (same # of molif gab on each side gab on each side f eqn.)

0, 18M= × mol xmel=0,18mplNO and 0.09melBiz

HAdd Oz = causes Q>K = Caused rantoshift left in response, when ran shifts left: d) K dog not change a) Proz increases e) Pco dermases b) K does not change C) Pco2 increases

 $200_2 = 200 + 0_2 + 514 k^3$ PAGE 15 THREE " Attern = -514 KJ" means that heat is produced in this exothermic reaction. You can taink of heat as a product. The reaction shifts to the left, since increasing the Traquires that heat (a product) be added to the system, Also, the equilibrium [costant will decrease? [co] and [U2] decrease and [cos] increases. (16) c, low temp (romones heat, drives rxn to right because this produces head) and low P (Fener moles of gas on rightside). (17) A, nore Freeton K SO2Ch2 = SU2+Ch2 (8) $K = \frac{[so_2][cl_2]}{[so_2cl_2]} = \frac{(0.0287)(0.0287)}{0.0106} = 0.0778$ I amost sure I amnot sure why the answer ter is wrong.

(19) N2U4 = ZNO2 I 0,0300M O C -x +2x E 0.0236M 2X

 $\Delta [N_204] = 0.0236 - 0.0390 = 0.0064M = X$ $2x = 2 \times 0.0064 = 0.0128M$ $K = \frac{[.0128]^2}{.0236} = 6.94 \times 10^{-3}$

 $K = \frac{P_{coro_2}}{P_{co}} = 1.49 \times 10^{8}$ $\frac{20}{\text{equilibrium } 8:60 \times 10^4} \quad \begin{array}{c} CO(l_2) \\ \hline CO(l_2) \\$ $P_{core_z} = (1,49\times10^{\circ})(8,60\times10^{-4})^{\circ}$ Plucez = 110 atm $= 1.10 \times 10^{2} atm$ 21) That Keg is a Kp," As Far as I know, this fact shald have been stated in the problem. PV=NRT p= (0,990 mal) (0,08206 Latm) (500K) 40.6 atm 1.000 L $K_p = 2.01 = \frac{40.6 - X}{x^2}$ PCR3 + CR2 = PCR5 40.6 atm \mathcal{O} 0 I 2.01 X2= 40.6-X -X+XC + X $\boldsymbol{\boldsymbol{\kappa}}$ 701+2+x=40.6 X 40.6-X F 2.01×2+×-40.6=0 $x = -b \pm \sqrt{b^2 - 0ac}$ (1=2,0) b=1 20 C=-40.6 $= -1 \pm \sqrt{1^{2} - (4)(2.01)(-40.6)}$ (2)(2.01) =-1 ± 1+ 326.4 2 (2.01) $\frac{17.09}{4.02} \neq 4.25 = 1000$ $= -1 + \sqrt{3274} = -1 + 18.09 = -18.09 = -18.0$

$$\begin{array}{l} (22) \\ P(l_{3} + (l_{2} \implies P(l_{5} = \frac{P(l_{5})}{Y} = \frac{(0.30 \text{ me})(0.00206 \frac{l_{0} + 1}{K \text{ me}})(500 \text{ K})}{1.00 \text{ L}} \\ K_{P} = 2.01 \\ T = 500 \text{ K} = \frac{P(l_{5})}{Y} = \frac{(0.30 \text{ me})(0.00206 \frac{l_{0} + 1}{K \text{ me}})(500 \text{ K})}{1.00 \text{ L}} \\ = 12.3 \text{ atm} \\ P(l_{3} + (l_{2} \implies P(l_{5} = 12.3 \text{ atm})) \\ C = +X + X - X \\ E \times (12.3 \text{ K}) \\ C = +X + X - X \\ E \times (12.3 \text{ K}) \\ C = -12.3 \\ X = -\frac{b \pm \sqrt{b^{2} - 4ac}}{12} \\ C = -12.3 \\ X = -\frac{b \pm \sqrt{b^{2} - 4ac}}{12} \\ = -\frac{1 \pm \sqrt{1 - (4)(2e0)(-123)}}{(2)(2e0))} \\ = -1 \pm \sqrt{1 + 98.892} \\ -\frac{4.02}{4.02} \\ Y = -\frac{1 \pm \sqrt{99.9892}}{4.02} \\ Y = -\frac{1 \pm \sqrt{99.9892}}{4.02} \\ Y = -\frac{1 \pm \sqrt{99.9892}}{4.02} \\ Y = -\frac{1 \pm \sqrt{99.9892}}{12.3 - 2.24} = 10.1 \text{ latm} \end{array}$$

AP[®] CHEMISTRY 2004 SCORING GUIDELINES (Form B)

Question 1

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

- 1. For the reaction represented above, the value of the equilibrium constant, K_p , is 3.1×10^{-4} at 700. K.
 - (a) Write the expression for the equilibrium constant, K_p , for the reaction.

(b) Assume that the initial partial pressures of the gases are as follows:

 $p_{\rm N2} = 0.411$ atm, $p_{\rm H2} = 0.903$ atm, and $p_{\rm NH3} = 0.224$ atm.

(i) Calculate the value of the reaction quotient, Q, at these initial conditions.

$Q = \frac{p_{\rm NH_3}^2}{p_{\rm N_2} \times p_{\rm H_2}^3} = \frac{(0.224)^2}{(0.411)(0.903)^3}$	1 point for calculation of Q with correct mass action expression
Q = 0.166	Note: must be consistent with part (a)

(ii) Predict the direction in which the reaction will proceed at 700. K if the initial partial pressures are those given above. Justify your answer.

Since $Q > K_p$, the numerator must decrease and the	1 point for direction or for stating that $Q > K_p$
denominator must increase, so the reaction must	1 maint fan annlanation
proceed from right to left to establish equilibrium.	I point for explanation

(c) Calculate the value of the equilibrium constant, K_c , given that the value of K_p for the reaction at 700. K is 3.1×10^{-4} .

$K_p = K_c(RT)\Delta n$ $\Delta n = 2 - 4 = -2$ $K_p = K_c(RT)^{-2}$	1 point for calculating Δn
$3.1 \times 10^{-4} = K_c (0.0821 \frac{\text{L atm}}{\text{mol K}} \times 700 \text{ K})^{-2}$	1 point for correct substitution and value of K
$3.1 \times 10^{-4} = K_c(3.0 \times 10^{-4})$ 1.0 = K	T point for correct substitution and value of K_c

Copyright © 2004 by College Entrance Examination Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

AP[®] CHEMISTRY 2004 SCORING GUIDELINES (Form B)

Question 1 (cont'd.)

(d) The value of K_p for the reaction represented below is 8.3×10^{-3} at 700. K.

$$\mathrm{NH}_3(g) + \mathrm{H}_2\mathrm{S}(g) \rightleftharpoons \mathrm{NH}_4\mathrm{HS}(g)$$

Calculate the value of K_p at 700. K for each of the reactions represented below.

(i) $NH_4HS(g) \rightleftharpoons NH_3(g) + H_2S(g)$

$K_p = \frac{1}{8.3 \times 10^{-3}} = 1.2 \times 10^2$	1 point for the calculation of K_p
--	--------------------------------------

(ii) $2 \operatorname{H}_2 S(g) + \operatorname{N}_2(g) + 3 \operatorname{H}_2(g) \rightleftharpoons 2 \operatorname{NH}_4 \operatorname{HS}(g)$

$2 \times [\mathrm{NH}_3(g) + \mathrm{H}_2\mathrm{S}(g) \rightleftharpoons \mathrm{NH}_4\mathrm{HS}(g)]$ $\mathrm{N}_2(g) + 3 \mathrm{H}_2(g) \rightleftharpoons 2 \mathrm{NH}_3(g)$	$\begin{split} K_p &= (8.3 \times 10^{-3})^2 \\ K_p &= 3.1 \times 10^{-4} \end{split}$	1 point for squaring K_p for NH ₄ HS or for multiplying K_p 's
$2 \text{ H}_2\text{S}(g) + \text{N}_2(g) + 3 \text{ H}_2(g) \rightleftharpoons 2 \text{ NH}_4\text{HS}(g)$ $K_p = (8.3 \times 10^{-3})^2 (3.1 \times 10^{-4}) = 2.1 \times 10^{-8}$		1 point for correct K_p